Toward formalized object-oriented management infor mation systems analysis. JIMIS
Wang, Shouhong

Journal of Management Information Systems; Spring 1996; 12, 4; ProQuest

pg. 117

Toward Formalized Object-Oriented
Management Information Systems Analysis

SHOUHONG WANG

SHOUHONG WANG is an Associate Professor of Management Informaiton Sustems at
the University of New Brunswick, Canada. He received his M.B.A. from Tsinghua
University, China, in 1981, and his Ph.D. in information systems from McMaster
University, Canada, in 1990. His experience includes working as a production senior
manager, teaching in MIS, and consulting as chief information systems analyst of the
State Ecomonic Commission of China. His research interests include information
systems analysis and design, artificial intelligence in management, and the human—
computer interface. His papers have been published (or are forthcoming) in Journal
of Management Information Systems, Decision Sciences, IEEE Transactions on
Systems, Man, and Cybernetics, Information Systems Management, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Computers and Operations
Research, INFOR, Fuzzy Sets and Systems, Computational Intelligence, Management
Science, European Journal of Operational Research, Canadian Journal of Adminis-
trative Science, International Journal of Information Management, and others.

ABSTRACT: Object-oriented approaches have received attention in management infor-
mation systems development due to the advantages over the traditional approaches
claimed by the proponents of the object-oriented approaches. To describe how people
actually perform object-oriented analyses, this paper formalizes an object-oriented
systems analysis approach. Protocol analyses of seven systems analysts, who were
experienced with structured analysis, were used to formalize procedures for object-
oriented analysis. The protocol analyses revealed four fundamental types of object
classes in a management information system. They are: input, output, physiomorphic,
and event object classes. The identification of input, output, and event classes depends
upon the problem domain being analyzed. Physiomorphic classes, on the other hand,
are more likely to match a schema that is perceived by the analyst based on his a priori
knowledge about the problem domain classes. The protocol analyses also revealed
that object classes are identified in an ad hoc manner; however, when checking the
analysis, depth-first or breadth-first searching methods are often used. These, in turn,
are controlled by a global backward or forward tracing strategy. Tracing the origin of
data in messages was the strategy used for checking the completeness of the analysis.

An experiment was conducted to compare the protocol-based object-oriented
method and structured analysis. Thirty-two students who had no previous systems
analysis experience were trained and then completed a problem using both technigues.
The protocol-based method produced analyses that more closely matched the problem.

Acknowledgments: The author wishes to thank the students who participated in this study. This
research was supported by a grant from the University of New Brunswick (90-352609) and a
grant from the Social Sciences and Humanities Research Council of Canada (410930057). The
author is indebted to two anonymous referees and an Associate Editor for their valuable
comments in revising this paper.

Journal of Management Information Systems / Spring 1996, Vol. 12, No. 4, pp. 117-141
Copyright © 1996 M.E. Sharpe, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypany .

118 SHOUHONG WANG

Furthermore, it required less time to complete an analysis, and it was perceived as
easier to use by the participants than the structured analysis method.

KEY WORDS AND PHRASES: management information systems analysis, object-ori-
ented systems analysis, protocol analysis.

ALTHOUGH OBJECT-ORIENTED PROGRAMMING [35] WAS DEVELOPED IN THE MID—
1960s, object-oriented system analysis (OOA) methods did not become popular until
the late 1980s [4, 6, 10, 37]. Since then, OOA has gradually achieved acceptance in
systems development [4, 55]. The philosophy of OOA is quite different from that of
the structured systems analysis approach. Instead of using functional decomposition
of the system, OOA focuses on identifying objects and their activities [37].

The computing society has demonstrated its extraordinary interest in object-oriented
methods [8, 22, 23]. Several researchers assert that the OOA approach is beneficial
for systems development {7, 13, 20, 25, 26, 41]. A recent information industry survey
indicated that the adoption rate of object-oriented methods is increasing dramatically
[34]. Organizations that embraced the approach have experienced significant cost
savings in the systems development area [34]. Given the recency of its development,
however, the methodology of OOA is far from mature. It is commonly accepted in the
object-oriented research field that the identification of object classes remains an art
that is highly dependent upon the problem domain [6, 7]. Although objects of a system
are “just there for the picking” [28], there are no general guidelines for identifying
objects. Moreover, the genuine OOA methods often suffer as a result of difficulties in
process representation and function refinement in information systems analysis [17,
18, 37, 45). There still is a need for an approach that merges functional, dynamic, and
object-oriented methodologies for systems analysis [10, 13, 17, 37].

Given the information-intensive nature of the systems analysis process and the
importance of representation for problem solving, basic research into the representa-
tion of systems analysis information is to be expected. On the other hand, there is little
research on the cognitive processes underlying how an analyst abstracts a description
for the information system. So far, much of the work on the process of systems analysis
is prescriptive rather than being based on observations or experiments. We do not have
enough experience with OOA to be sure where it fits best, how it can best be applied,
or when it can be used to supplement more traditional techniques. This suggests that
some important characteristics of systems analysis behavior need to be studied
experimentally. In the case of developing an OOA method, this kind of research is
especially helpful because the OOA field is still in its infancy.

The purpose of the present research is to demonstrate that an empirical approach for
studying management information systems analysis is both possible and valuable. As
such, this study first formalizes a method (or procedures) that could be used to analyze
a system in the object-oriented context by using protocol analysis. It then tests the
method empirically.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyany

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 119

Using Protocol Analysis for Understanding OOA

Methodology—Protocol Analysis

PROTOCOL ANALYSIS [11, 31] IS A RESEARCH TECHNIQUE USED for studying manage-
ment information systems development [24], process tracing in decision support
systems [48], decision-making analysis [5], software psychology [42], and knowl-
edge-based modeling [21]. In protocol analysis, participants are asked to “think aloud”
and “talk aloud” while performing tasks and to verbalize their thoughts as they solve
the problem. Protocol analysis is oriented toward extracting the mental behaviors
inherent in verbal transcriptions, called protocols.

Protocol analysis is controversial. Two major literature reviews presented different
viewpoints regarding the usefulness of verbal reports. Based on the evidence reviewed,
Nisbett and Wilson [32] suggested that there may be little relationship between verbal
reports and higher-order cognitive processes. It should be noted that all of the studies that
were analyzed in Nisbett and Wilson’s [32] review used retrospective verbalizations, and
therefore their criticisms of protocol methodology should be limited to this particular type
of protocol data collection [33]. The opposite view was provided by Ericsson and Simon
[11], who proclaimed the validity of verbal reports. The central argument of protocol
analysis, according to Ericsson and Simon [11], is that verbal reports are valuable data for
understanding human information processing, even though some intermediate informa-
tion may be missing. They argued that all data processing requires a transformation from
an initial observation to a form in which a person’s theories can be tested. Verbalization
is one of the most critical elements of the human behavioral repertoire, and can be used
as a vehicle for organizing, directing, and evaluating action toward a goal.

Although there is little research on the application of protocol analysis to information
systems analysis, protocol methodology is considered a particularly promising method
for use in MIS research [48, 49]. We believe that protocol analysis is particularly suited
to developing an understanding of how information systems are analyzed. This
research project was motivated by the success of Ericsson and Simon’s approach and
the consideration that a protocol may be the only source of data regarding the cognitive
processes involved in systems analysis [50]. Protocol analysis is used in this research
to trace how system analysts operate in modeling the real information system,l

The method of object-oriented systems analysis presented in this paper was based
on the observation of behaviors in the context of the problem-solving theory of Newell
and Simon [31]. It shares their view of problem solvers as information-processing
systems. Because concurrent neutral-probing verbalizations are considered to be the
most valid and reliable of methods utilized for formal protocol collection [12], they
were selected for use in this study.

Participants

The selection of participants was difficult as this particular study attempted to solve
a “chicken and egg” problem. On one hand, the experiments attempted to find an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaany .

120 SHOUHONG WANG

appropriate method for OOA through a protocol analysis, which would provide insight
into the analysts’ cognitive processes during the performance of OOA. The partici-
pants for this study had to be representative of OOA analysts, as this would ensure the
value of the conclusions of a protocol analysis. On the other hand, given the fact that
OOA is still in the early stage of development, it was impossible to find skilled analysts
with OOA experience in information systems organizations that were willing to
participate in the study.

Another issue most often addressed in challenging the validity of verbal protocol
analysis is the sample sizes employed. When the object of the research is to identify
the process, strategy, or information used by the participants, and when there is no
intent to make inferences about population parameters per se, the use of small samples
does not adversely impact the analysis result [19]. In addition, the time-consuming
nature of protocol analysis necessitates the use of smaller sample sizes than are usually
employed in statistical tests of hypothesis. It is not unusual to carry out successful
protocol analyses for only three or four participants (e.g., [16, 21]).

Taking the above factors into account, seven M.B.A. students (four male, three
female), who had at least three years experience in systems analysis in industry, were
selected” as the participants for the protocol analysis. Each participant learned OOA
and completed a course project using the method. Textbooks [35, 37] were assigned to
them to learn OOA; however, they were not required to follow a specific method or
tool of OOA.

Experimental Design

Participants practiced “thinking aloud” while performing systems analysis prior to the
protocol collection sessions. Following the practice of Ericsson and Simon [11, 12],
participants were advised to take their time when verbalizing during the protocols, and
not to be afraid of verbalizing too much. In protocol collection sessions, two sets of
protocols were collected from each participant. One set was from a standard mini-case
of a payroll system following the example in Senn [40, p. 701]. The second set of
protocols was collected when the participant was analyzing his or her own project,
such as a telephone company billing system or a lumber company purchasing system.

While working on systems analyses, the participants could use paper and pen to
draw step-by-step diagrams. The participants were encouraged to use whatever
notations and symbols they considered most appropriate to express their ideas. The
participant was asked to “talk aloud” about what he or she was doing, and what the
diagrams meant. The verbal statements were audiotaped, and the transcriptions of the
tape recordings were analyzed together with the participant’s draft diagrams. To obtain
first-hand data and closely monitor the experimental procedure, the author was present
during the verbalizations of each participant. His role was to operate the audio recorder
and measure the draft diagrams. He did not give any instructions during the verbalizations.

The segmentation of spoken information into sentences in the transcript was made
according to two rules. First, a break was made whenever the participant was judged
to have paused in speaking. Second, if speech was relatively continuous, breaks were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaay

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 121

made between major clauses. This segmentation into sentences in the protocol was
intended to give an indication of the conceptual units used by the participant.

Retrospective questioning was driven by a checklist of different behaviors that were
expected to occur during the analysis (e.g., “How did you find an object class in this
situation?”’). Following Ericsson and Simon’s [11, 12] practice, only open-ended
questions were presented to the participants. Finally, each of the participants com-
pleted a questionnaire identifying details of all previous systems analysis experience
and his or her confidence in OOA.

Analysis

Protocol transcripts (see an example in appendix A) were analyzed by matching mental
behaviors to oral sentences and written drafts of diagrams. Generally, two different
analysis methods are employed in protocol studies [12]. The first method does not
require the analysis of meanings for the observed verbalizations. This method is
commonly used in cases where there is a prior agreement between the participant and
the researcher regarding specific signals for their communication. The second type of
coding does require the interpretation of meanings. This approach is more typical in
the case of information systems analysis. In this type of coding, a protocol analysis
must involve the researcher’s prior knowledge or assumptions. Thus, the coding
scheme—that is, the set of behavior categories—for protocols is not provided through
analysis of the protocols themselves [12], but is defined a priori by the researchers.
This was the approach used in this study.

A set of behavior coding categories was developed by evaluating the OOA processes
in [3, 6, 10, 28, 37, 41] and the coding of preliminary data. Nine categories were
generated and used in this study. In essence, each distinct category of behavior, such
as identifying an object class, can be coded by mapping the verbalization to the
category. For example, given the sentence “Customer must be an object class which
provides necessary data for an order,” the researcher would then code this as “identi-
fying an object class.” In protocol analysis for information systems analysis, it is
important to divide the categories into mental and nonmental behaviors [46]. The nine
categories and their divisions are:

Observed mental behaviors:

o Identifying object classes: Statement of an object class found in a protocol for
the first time (e.g., “Employee is an object class”).

» Identifying attributes of a class: Statement about data properties of a class (e.g.,
“Employee name, employee number, gender, address are the attributes of the
employee class™).

« Identifying internal operations of a class: Statement about information process-
ing within a class (e.g., “Net pay is equal to gross pay minus tax deductions™).

« Identifying inheritance structures: Statement of fact about the inheritance rela-
tionships between object classes (e.g., “Full-time employee and part-time em-
ployee are the subclasses of employee”).

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyypanwy. |

122 SHOUHONG WANG

* Identifying message sending: Statement of fact about the communication be-
tween object classes (e.g., “Paycheck gets information about the employees,
such as employee name and address, from the employee class™).

* Assertions of analysis strategies: Verbalization about planning at a meta level
(e.g., “Check over the diagram by tracing the sources of the data items in the
paycheck class™).

« Iterations of processes: Statement of control over the analytical process by
repeating a process (€.g., “Do the same procedure to .. .asto...”).

Nonmental behaviors
s Physical construction of diagrams: Constructing and drawing an object-oriented
systems analysis diagram, without any strict guideline.
* Reading and searching information: Searching for and retrieval of data in the
problem text or existing diagrams (e.g., reading the problem statements of a
system to be analyzed).

Each protocol segment was matched with the categories. For example, in appendix
A, segment 2 was coded as “Identifying object classes,” and segment 3 was coded as
“Identifying attributes of a class.” It was entirely possible for one statement to
correspond to a few different coding categories. For example, according to the
time-measured draft diagrams, segment 15 in appendix A was coded to “Identifying
object classes” as well as “Identifying inheritance structure.”

The protocol segments were then encoded into the Problem Behavior Graphs (PBG)
[31]. A PBG describes the problem solver’s behavior by representing the states of
knowledge and their transformation during the course of problem solving. In this
study, PBGs were used to aid us in identifying major components of the formalized
OOA method. An example of the PBG encoded in this research program can be found
in Wang and Archer [53]. In the final protocol analyses, we believe that a point was
reached where the participants reliably reported their mental behaviors important for
our purposes.

As asummary of the protocol analysis, the distribution of the categories to the mental
behaviors for the payroll problem and other example cases are outlined in Table 1. In
the table, the rows list mental behaviors, the columns list example cases, and each cell
contains the number and percentage of categories that were associated with the
behavior for that problem. Note that behaviors of recall (e.g., retrieve a defined object
class), or redefining (e.g., rename a defined object class), that account for the other
substantial portions of the protocols were normally found in checking the complete-
ness of the analysis. These segments were not counted because they were related to
the same mental behavior and did not make independent contributions to a system
analysis method.

Validation of the Protocol Analysis

Each verbal report was transcribed from audio tape and segmented into short phrases
by the researcher and an independent research assistant. Identified speech segments

Reproduced with permission of the .copyright:-owner. Further reproduction prohibited without permissionyaan,

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 123

Table 1. Distribution of the Categories to the Mental Behaviors
for the Example Problems

Cases
The payroll ~ Bird-watching The purchasing The time and
system club system attendance

(average of 7 ~management system
Behaviors protocols)
Identifying object 10/73 6/91 14/122 12/165
classes (13.7 %) (6.6%) (11.5%) (7.2%)
Identifying 9/73 14/91 15/122 18/165
attributes of a class (12.3%) (15.4%) (12.3%) (10.9%)
Identifying internal 7/73 9/91 20/122 18/165
operations of a (9.6%) (9.9%) (16.4%) (10.9%)
class
Identifying 2173 4/91 2/122 4/165
inheritance (2.7%) (4.4%) (1.6%) (2.4%)
structures
Identifying the 12/73 12/91 25/122 18/165
message sending (16.4%) (13.2%) (20.5%) (10.9%)
Assertions of 2/73 5/91 2/122 4/165
analysis strategies (2.7%) (5.5%) (1.6%) (2.4%)
Iterations of 0/73 1/91 2/122 0/165
processes (0%) (1.1%) (1.6%) (0%)

were then allocated to the categories listed previously in this paper. There was 98
percent agreement between the two researchers in the categorization of segments. The
differences in categorization were discussed and an agreement was reached for those
in which segmentation differed.

An OOA Method Based on the Protocol Analysis

IN THE PRESENT RESEARCH, A THINK-ALOUD PROTOCOL WAS EMPLOYED to assist in
formalizing a method in OOA. Then, further experimental tests were designed to
evaluate the formalized OOA method. The aim of constructing the OOA method was
to produce a framework that describes individual episodes of systems analysis behav-
ior. The protocol analyses of object-oriented systems analysis behaviors provided
insights into the identification of object classes in OOA, and process of systems
analysis.

Three major components of the OOA method were identified: four types of object
classes, systematic control strategies, and matching inheritance structure. A matrix
that maps the observed behaviors on the components of the method is presented in
Table 2; the rows list the observed mental behaviors, and the columns list the major
components of the OOA method. Each cell describes how the component of the
method addressed the observed behavior.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaany.

124 SHOUHONG WANG

Table 2. Relationships between the Mental Behaviors and the
Components of the Method
Components of the method
Four fundamental Systematic control Matching
types of object strategies: tracing inheritance
Behaviors classes and searching structure
Identifying object All classes identified Some classes Some classes are
classes can be categorized (especially event identified by matching
classes) are inheritance structures
identified through
tracing and searching
|dentifying attributes Event, input, output Some attributes are Some attributes are
of a class classes have their identified through identified via
unique generic tracing and matching a priori
attributes (e.g. time searching frames
in event classes)
Identifying internal ~ Event, input, output N/A N/A
operations of a classes have their
class unique generic
operations (e.g.,
print in output
classes)
Identifying Physiomorphic N/A Inheritance structures
inheritance classes are more are often identified by
structures likely to match a priori matching a priori
frames frames
Identifying the Event, input classes Tracing and N/A
message sending have their unique searching are
generic message accomplished by
sending following the
(e.qg., trigger) message courses
Assertions of Categorizing Tracing and Matching a priori
analysis strategies ~ fundamental types of searching is an frames is an analysis
object classes can be analysis strategy strategy
an analysis strategy
lterations of N/A Tracing and N/A
processes searching are
iterations
Searching memory N/A N/A Searching a priori
frames for matching
inheritance structures

Four Types of Object Classes

There are four fundamental types of object classes in management information
systems: physiomorphic, event, output, and input.

er. Further reproduction prohibited without permissionyanwy

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 125

Physiomorphic Object

Physiomorphic object refers to a physically existing entity, including a person (e.g.,
customer, salesman), a property item (e.g., machine, building), and an organization
unit (e.g., company, department). A system analyst usually has no difficulty in
identifying those physiomorphic object classes around him or her; however, the
attributes of each physiomorphic object class may not be identified completely at a
glance. The operations on the object classes are even harder to uncover. It was found
in the present protocol analysis that, for instance, an analyst of a marketing information
system can easily identify CUSTOMER as an object class. Although the analyst is able
to present a list of attributes for the CUSTOMER class, she or he may not be certain if
these attributes are complete or redundant at the moment. She or he also cannot tell
what operations would be involved without thinking about other object classes. As
discussed later, to elaborate on physiomorphic object classes, iterations of refinement
are usually needed.

Event

It was found that time perspectives were included in the schema of analysts. These
time-dependent aspects of a system could be included in the operations of phys-
iomorphic classes, but were often expressed in the form of event object classes.
Because events are noticeable in the management environment, a system analyst is
able to identify events based on his or her knowledge about day-to-day business
operations and decision-making activities. Events are associated with state transitions
of the system and explicitly express the system’s dynamic properties. Some events
could be routine operations or transactions such as paying, ordering, and scheduling.
Others could be decision-making activities such as credit approval and personnel
promotion.

An event is initiated by a trigger. In other words, one event is caused by or causes
other events. A trigger could be a schedule (e.g., once every five days, 5 PM every
day); the time when the state of an attribute of an object reaches a critical point (e.g.,
the inventory level reaches a reorder point); or an outside occurrence impacting the
system (e.g., a telephone call).

A system analyst often discovers other object classes based on descriptions of
events. For example, in an office system, the physiomorphic object class of SECRE-
TARY is easy to identify but other object classes (e.g., MEETING-SCHEDULE) and their
operations are less apparent unless the system analyst searches all the events happen-
ing to the SECRETARY.

Output

It was our observation that system analysts were knowledgeable about outputs of the
systems. This is not only because the traditional structured methods, which emphasize
identifying system outputs, have made a strong impact on the system development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaanw.r

126 SHOUHONG WANG

philosophy of most analysts, but is also due to the nature of the objectives of
systems development. For instance, questions such as “Why do I develop an
information system?” and “What do I expect from the system?” were found in
protocol segments.

An output object in MIS is usually a report. A sales summary, an invoice, or a credit
certificate are some examples. It was found in the protocols collected that output was
considered to be a fundamental type of object class based on the following facts.
First, output objects have attributes describing the output properties, such as format
and frequency. These attributes are called nontraceable attributes because they have
little relationship to other object classes. Second, there are a significant number of
operations in information systems that perform document writing/printing functions.
These operations are associated with specific output reports so that object modules
become more cohesive.

Input

As was the case with output object classes, system analysts were familiar with inputs
of the system. Input objects are representations of the information entities that enter
the system (e.g., order applications or government statistics for marketing forecasting).
Input objects have their specific attributes, such as format and frequency, which must
be included in the descriptions of the object classes.

Systematic Control Strategies: Tracing and Searching

It was found that at the early stage of a system analysis the analysts identified object
classes in an ad hoc fashion. Some analysts started with physiomorphic object classes,
but others’ first move was with event, or input, or output. Each of the analysts,
however, without exception, performed a global tracing procedure before she or he
completed the analysis. There are two modes of global tracing, one of which is
backward tracing. This mode uncovers (or checks) output classes and their attributes
by tracing backward in three ways: (1) by finding the event that triggers the object
class currently investigated; (2) by finding the origin of messages received and the
destinations of messages sent to acquire data items; and (3) by defining the internal
manipulations of the values of attributes.

For example, in a payroll system (see figures 3 and 4, in appendix B), suppose the
analyst first identifies (or checks) the output object class of PAYCHECK and its
attributes, such as EMPLOYEE-NAME, GROSS-PAY,INCOME-TAX, and NET-PAYMENT. The
analyst then considers which event triggers PAYCHECK, and where the data items of
these traceable attributes come from. The analyst will trace back to the PAYDAY event
which triggers the PAYCHECK object class, as well as the EMPLOYEE object class where
the data of EMPLOYEE-NAME come from. In the above example, it is found that an
analyst will not stop a trace until the system boundary (e.g., the SYSTEM-CLOCK,
REGISTRATION object class) or a terminal operation (e.g., INCOME-TAX-CALCULATION)
is reached (see the example protocol lines 47-50 in appendix A).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypany .

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 127

The second global tracing mode is forward tracing. In contrast to backward tracing,
the forward-tracing process begins with event and input object classes, and ends with
output object classes. The protocol analysis indicated that the analysts often used a
combination of the two tracing strategies.

Within a tracing process, there are two local searching strategies: breadth-first
searching and depth-first searching. In breadth-first searching the analyst anchors an
object class and searches all object classes that have direct connections (message
sending) with the anchored class. For example, in a payroll system, suppose the
PAYCHECK class is anchored, and then the following are searched: EMPLOYEE (which
provides all information about the paycheck receiver), then TIME-CARD (which pro-
vides work hours), and finally PAYDAY which triggers PAYCHECK. In depth-first
searching the analyst searches, in turn, the next object class along with the tracing
path. In the payroll system example, suppose the backward tracing strategy is used.
After PAYCHECK has been identified and anchored, the PAYDAY class that triggers
PAYCHECK is identified. Next, PAYDAY is anchored, and SYSTEM-CLOCK which triggers
PAYDAY is discovered.

Matching Inheritance Structure

Structuring the inheritance relationship between the object classes entails complex,
open-ended cognitive analyses that are very difficult to characterize in a systematic
way. Nevertheless, a number of mental behaviors in the identification of the inheri-
tance structure of object classes were revealed in the protocol analysis. A priori, the
analysts often had a schema or frame for representing a stereotypical inheritance
structure of a familiar system [29, 39]. When the analyst tries to formulate the
inheritance structure between the physiomorphic object classes, a schema is retrieved
to match the identified physiomorphic object classes. This phenomenon is consistent
with the findings in [15]. However, in the case of an unfamiliar problem that does not
generate a schema in the analyst’s mind and where the analyst fails to retrieve a
schema, he or she is unlikely to formalize the inheritance relationships between the
identified physiomorphic object classes.

The observed mental behaviors involved in generating the inheritance structures are
illustrated by the following example. Assume that the analyst has identified a WORKER
class based on the descriptions of the systein. When the analyst identifies a class named
LABOR, he may find that it is virtually the same as WORKER in the context of the system;
therefore he could add an alias of LABOR to WORKER. If the analyst identifies a class
named CUSTOMER, he may simply add it into the class set because he does not see any
common properties shared by WORKER and CUSTOMER in that context. If the analyst
identifies a class PART-TIME-WORKER, she is likely to decide to reorganize the structure
of the class set so that the system has a superclass of EMPLOYEE, which extracts the
common properties (attributes or operations) shared by both FULL-TIME-WORKER and
PART-TIME-WORKER. This, in turn, subordinates FULL-TIME-WORKER and PART-TIME-
WORKER to EMPLOYEE. It appears that these behaviors were accomplished by means
of semantic analysis [43].3

—

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyypanwy. |

128 SHOUHONG WANG

Findings of the Protocol Analysis

Based on our protocol analyses, it was observed that an object-oriented systems
analysis is a complicated information gathering and abstraction process. Given this
finding, that it would be possible to summarize the protocols into a simple
algorithm seems unlikely. Nevertheless, some aspects of commonality in OOA
were observed in the protocol analyses. These refined components of object-ori-
ented systems analysis can be formalized into OOA procedures, are described in
figure 1. Four fundamental types of object classes might be identified by the
systems analyst: input, output, physiomorphic, and event object classes. The
identification of input, output, and event classes depends upon the problem domain
being analyzed. Physiomorphic classes should be able to match a schema that is
best perceived by the analyst in relation to the problem to be analyzed based on
his or her a priori knowledge. To search object classes in a systematic way,
depth-first or breadth-first searching methods can be used, which, in turn, are
controlled by a global backward- or forward-tracing strategy.

The above formalized procedures can be employed as 2 method for OOA. This
method for OOA has two unique features not supported by other OOA methods.

1. A uniform paradigm of functional, dynamic and object-oriented methodol-
ogies. Research by the object-oriented systems analysis community has
often found that there is a lack of a uniform paradigm that merges func-
tional, dynamic, and object-oriented methodologies [13, 17,37]. The OOA
method suggested in this paper integrates the descriptions of three aspects
of an information system—namely, object, function, and dynamics—into
the single object-oriented paradigm. This method not only deals with
tangible physiomorphic objects in the usual way, but also describes dy-
namic (timing) and functional properties of a system by defining event
object classes. The functional properties of a system are also delineated by
specifying internal operations of the object classes and data flows (param-
eters of the messages) between the object modulars.

2. An algorithmic analysis method. The OOA method has outlined structured
elements for system analyses, which include stereotypes of object classes,
local searching, a global tracing process, and matching a priori inheritance
structure. Even though the actual mental processes of a system analyst will
always remain unknown, these infrastructural elements were often found
to exist in the verbal protocols. As will be shown later in this paper, an
approach composed of such algorithmic procedures appears to substantially
reduce the requirement for artistic skills in object-oriented systems analy-
ses.

To demonstrate the value of this method, the new features of this OOA method are
contrasted with other currently available OOA techniques in Table 3. In the table,
each cell gives a note to explain whether the currently available technique implements
the component of the present OOA method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypany .

129

[24n31]
weibelp YOO
sa|qel
suopoesuel] *) ||eo auoyd *
$8|Npayos $88001d * Anua eleQq "

1sAjeue weisAs

(spiemio}/spremyoeg)
mcEQmwm Bujoel l_, —
mc_om._ T
: O

(1s1y-yrpeaignisiy-yidaQq)
W

Buiyossesag al ¥sIq
Bujoes B I
juswuolAUg ¢ \ 1Bl (spiemio} __M“hmm :
suopezjuebiQ * [= e] /spiemyoeg) yoday
saoInosay _|||_‘||_ Bujoels|
P e ﬂ _ |
(ewoyos) _ i Indino “
!

olydiowoisAud o)

er. Further reproduction prohibited without permissionyawy.

130 SHOUHONG WANG

Table 3. Comparison of Object-Oriented Systems Analysis Methods

Components of the new method

Systematic control Matching
Four types of strategies: tracing inheritance

Other OOA methods object classes and searching structure
Bailin object-oriented Entity-relationship ~ Entity-relationship ~ The method does not
requirements diagram focuses diagram does not support inheritance
specification [1] more on specify data flows structures

physiomorphic and processing

classes sequences
Coad & Yourdon Object classes The method does not Formalize inheritance
object-oriented diagram layer—1 is support data flow structure in bottom-
analysis [6] for physiomorphic tracing up fashion

classes only
Shlaer & Mellor Event is not modeled The method does not The method does
object-oriented in the object class provide a tracing not specify how to
analysis [41] term device construct an

information structure
diagram

Rumbaugh et al. Object classes are Object paradigm Formalize inheritance
object-oriented basically does not integrate structure in bottom-
modeling [37] physiomorphic functional aspects up fashion
Embley et al. Physiomorphicand The approachdoes The method does not
object-oriented event are two not ensure the specify how to build
analysis [10] fundamental types completeness of an inheritance structure

of classes analysis

A reduction of the above OOA method has been developed as an OOA tool. The
notations of diagrams for the OOA tool (see figure 3) and an example diagram of an
OOA result (see figure 4) are demonstrated in appendix B.

Evaluation of the OOA Method

V ALUABLE METHODS THAT SUPPORT INFORMATION SYSTEMS ANALYSIS are those that
simultaneously ease the process of analysis and improve the usability of the analysis
results [36]. An experiment was conducted to evaluate the potential of the formalized
OOA method in performing this dual function. It was expected that the OOA method
would be useful in business-process modeling [53] and MIS analyses [52, 54]. The
remainder of this paper presents the results of an experiment designed to test the
formalized OOA procedure.

Method

The method used in this experimental study compared the formalized OOA method
with a data flow diagramming (DFD) [9, 14] method. Two considerations motivated
these experiments. First, DFD methods are among the most popular for information

er. Further reproduction prohibited without permissionyaany .

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 131

systems analysis [1], and thus provide a potential benchmark for evaluating a new
systems analysis method. Second, as discussed earlier, the development of an OOA
method is based mainly on the premise that the object-oriented paradigm is more
beneficial than traditional methods in the whole life cycle of systems development.
However, a complete evaluation of the paradigm requires comparison of analysis
approaches.

Participants

During sampling, one consideration was that previous skills and knowledge of any
particular information systems method would influence the participant’s performance
and represent uncontrolled biases to the experiment. Participants employed for this
experiment must not have taken any MIS courses at the time of the project and have
no previous experience in systems analysis. In addition, participants required business
knowledge to understand the information system to be analyzed. Second- and third-
year undergraduate business students have both of these characteristics.

Thirty-seven undergraduate business students were employed (paid $5 per hour) in
the experiment. Five of these were unable to finish. Data from the remaining 32
participants (23 male and 9 female, with a GPA of at least 2.5) provided the basis for
evaluating the usefulness of the protocol-based method.

Participants were asked to learn both the data flow diagram (DFD) method and the
formalized OOA method, and to analyze an MIS mini-case using the two methods.
Afterwards, participants were asked to complete a questionnaire.

Experimental Design

The independent variable was method with two categories (i.e., the DFD method and
the formalized OOA method). The determination of dependent variables was not so
straightforward. As pointed out earlier in this paper, because of the dearth of experi-
mental comparisons of different MIS analysis methods, few guidelines exist to
develop the dependent variables for such experiments. Based on a review of the
research (i.e., Sutcliffe and Maiden [46]), and the proposition that the tool of the
formalized OOA method is a “language” [30] for coding the real information process-
ing world, the following dependent variables were evaluated: (a) time for learning the
methods; (b) time for analyzing a system using the methods; (c) accuracy of the
analysis results using the methods; and (d) subjective preference of the participants.

The first two are objective criteria. They are used to evaluate the ease and simplicity
of the systems analysis method. These two criteria address surface structure or syntax
characteristics of the method. The accuracy criterion is also objective. However, it
mainly addresses the ability of the participants to use the analysis procedure in
modeling the deep structure or semantic characteristics in the real world. The fourth
criterion is subjective. It was primarily used to cross-check the experimental results
on the first three objective criteria.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaany .

132 SHOUHONG WANG

Experimental Procedure and Material

There were three experimental sessions for each participant. The first two were
systems analysis sessions, and the third was a questionnaire session. In each of the
systems analysis sessions the participants were asked to learn one of the methods (DFD
or OOA) and to analyze a mini-case applying the method. To reduce interactive effects
between the two sessions, participants were randomly divided into two groups, and
each group was assigned one of the two methods first.

There were two subsessions in each systems analysis session. In the first subsession
participants were given a six-page anonymous document describing the corresponding
systems analysis method together with a simple example of it. The document for the
DFD method was from Senn’s textbook [40, pp. 701-706], while the document for
the formalized OOA method was edited based on the present method (see [51] for a
detailed outline of the document). The participants did not know the identity of the authors
of the DFD and OOA documents. During the first part of an analysis subsection, each
participant was requested to read the document until confident he or she understood the
method. Meanwhile, they recorded the degree of their comprehension of the method ona
seven-point scale at each interval of an hour spent reading (e.g., a sample question is: How
much do you understand the systems analysis method?). Although no time limit was set
for reading, all the participants finished within five hours.

In the second subsession of a systems analysis session, participants were requested
to analyze a mini-case in management information systems analysis. The case came
from McLeod’s MIS textbook [27, pp. 419-420]. The same case was used for both
approaches to ensure a fair comparison of the methods. The selection of the treatment
was based on considerations such as problem scale and richness of semantic charac-
teristics. In the first systems analysis session, participants were given sufficient time
(about one hour) to read and fully understand the case. During the analysis subsession
of both sessions, participants were given sufficient time to analyze the case using the
two individual systems analysis methods—that is, the DFD method and the OOA
method. The time spent analyzing the case was recorded for each participant.

After completion of the experimental task, a questionnaire session was administered
to elicit subjective ratings of the systems analysis methods used. In the questionnaire
session, participants were first requested to recall and briefly describe the two
methods. Participants then answered closed-ended questions rated on a seven-point
scale, as well as open-ended questions to elicit comments about the two methods.

Analysis and Findings

Time for Learning the Methods

The degree of participants’ subjective comprehension (degree of understanding) of
the two analysis methods was associated with the time used in learning the two
methods. The analysis result is presented in figure 2. In terms of total time used for
learning an individual method, no significant difference was found (see Table 4 for a

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyany

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 133

ré kT s ae W = K T = S sipeang
T
/’/</ -
6 e Y,
i >

o A it
= £
= #
- i
173 ey
G(Q, 4 /,/’y /
o < /
[’/ /
=, /
6 3 /"/ //
3 / J/
8 21 / //////
(@] // ”//-//

11 FARP o

Vi
O ’7":_ T T T T T T
0 60 120 180 240 300
Time (Minutes)
Mi’i bﬁﬁfﬁ&\j

Figure 2.

summary). However, the patterns of the learning progress in the two methods were
quite different. As shown in figure 2, in the early stage of the learning process, the
OOA method seemed initially to be easier to comprehend than the DFD method. That
is, it was found that the participants perceived that they learned OOA more quickly
than DFD in the beginning, but the learning progress in OOA then slowed down.

This experiment showed “fatigue effects” due to the intensive time schedule. These
effects were not taken into account in the comparison because they were expected to
impact equally on the learning of both methods.

Time for Analyzing a System Using the Methods

A t-test showed that the OOA method was superior to the DFD method in that it saved
time in systems analysis. The difference in time spent in analyzing a system using the
two methods was significant (see Table 4 for a summary). According to our observa-
tions, participants spent an excessive amount of time developing artificial process
modules and exploding from level to level when they were using the DFD method.

Accuracy of the Analysis Results Using the Methods

In evaluating the accuracy of systems analysis results, the focus is on semantic features
of participants’ solutions rather than on the syntax of the diagramming representation,

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyypanwy. |

134 SHOUHONG WANG

Table4. A Summary of Statistics for the Test

Means Standard Ranges t-test
deviation

Time for learning the methods (minutes)

Session 1 DFD 283 64.4 210-300 t39 = 0.36"
OO0A 291 59.8 220-300

Session 2 DFD 273 71.3 195-300 fyp = 0.92*
OO0A 295 63.5 215-300

Time for analyzing a system (minutes)

Session 1 DFD 172 25.9 145185 3y =2.51""
O0A 151 21.1 140-180

Session 2 DFD 124 18.5 95-135 tag = 1.40*
OO0OA 115 17.8 90-140

Accuracy of the analysis results (scores)

Session 1 DFD 4.5 2.40 2-8 tyg =3.11"**
QO0A 6.9 1.94 410

Session 2 DFD 4.9 2.81 2-8 tyg =217
OO0A 6.8 2.08 311

* Not significant; ** p < 0.05; *** p < 0.01.

A marking scheme was first developed based on the text of the treatment case. Since
natural language is unstructured but powerful in semantic expression [44], a narrative
sentence is recognized as an independent semantic statement for the information
system and is considered to be a component of a description of the system. Fifteen
sentences were identified to be relevant to the information processing. Each was a
component of the description of the system. Accordingly, the fifteen components
formed a semantic scoring. Participants received a score of one if a component was
correctly modeled in the resulting diagram, or zero if it was incorrectly modeled.
Correctness scores were considered an appropriate measure of accuracy of analysis.
A t-test showed that the OOA method was significantly better than the DFD method
in terms of accuracy in modeling an information system (see Table 4 for a summary).
A qualitative examination of the participants’ analysis reports revealed that the DFD
method was defective in modeling timing properties of the systems.

Subjective Preference Based on the Participants’ Judgment

Subjective preference based on the participants’ judgments of the two systems analysis
methods was analyzed. According to the Mann-Whitney statistical test on the ratings,
the OOA method was easier to use, the meanings captured in OOA diagrams were
more clear, and the unbiased students preferred the OOA method. However, the two
methods showed little difference in perceived ease of learning and usefulness. A
summary of the attributes evaluated and their ratings is presented in Table 5.

On the basis of the results, it was concluded that the formalized OOA method is
effective for systems analysis compared with the data flow diagram method. Given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyany .

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 135

Table 5. Mann-Whitney Test Result on Questionnaire Data

Point estimate

for ETAgoa—
Mann- ETAppp and
Median* Whitney Average rank confidence W (value of
Attribute significance OOA DFD interval (95%) Wilcoxson test)
Easy to learn 4.0 N.S. - —_ e [y
Easy to use 4.0 0.048 19.7 13.3 1.0 315
(—0.00, 2.00)
Clarity of the 4.0 0.046 19.6 13.3 1.0 315
diagrams (-0.00, 1.00)
Usefulness in 5.0 N.S. — — — k.
modeling
systems
Overall 4.0 0.001 22.7 10.3 2.0 363
preference (1.00, 3.00)

* A higher score means agreement with the statement.

All items were rated on a 7-point scale.

the limited scope of our experiments, this conclusion may have limited applicability
to complex systems analysis tasks. There is good reason to believe, however, that the
results could be used for generating a priori hypotheses for research investigating more
comprehensive systems analysis tasks.

Discussion and Conclusions

A PARTICULAR SYSTEMS DEVELOPMENT APPROACH IS USUALLY ASSOCIATED with a
philosophy of computer programming, and a full evaluation of a systems development
approach should have a much broader coverage than a discussion of its analysis
method. It is rarely possible to prove that one system development approach is better
than the others in all aspects. Nevertheless, from our point of view, the “goodness” of
a systems development approach could not be concluded without investigating the
approach at the systems analysis level.

This research has come one step toward demonstrating the effectiveness and
efficiency of the object-oriented systems development approach. The objective of this
research program was to contribute to the development of a practical systems analysis
method in the object-oriented paradigm. To obtain knowledge about behaviors during
systems analysis, a protocol analysis method was applied.

Protocols are a form of data, and can be effectively used to formalize a procedure
to describe, in our case, how systems analysts develop models of information systems
using object-oriented techniques/methods. However, protocol analysis always in-
volves errors. From this point of view, a method based on the protocol analysis always

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaanw.r

136 SHOUHONG WANG

has its limitations. In this study, as has been recognized, novice object-oriented
systems analysts were employed for the protocols given the fact that sophisticated
object-oriented systems analysts are scarce at this time. Consequently, the method
formalized in this paper may not be applicable for general cases. Further, the formal-
ized method was compared with the data flow diagrams method based on the
performance of undergraduate business students who were naive about information
systems analysis. Given such a limited scope of testing, it is not known whether the
formalized method is effective and efficient for other cases. Nevertheless, we believe
that the formalized method is a good start for the development of object-oriented
management information systems analysis methods.

There are potential directions for future research on the problem. One is to strive to
improve the present formalized procedures based on independent protocol analyses.
It will be possible to collect protocols from experienced object-oriented systems
analysts in the future. Another is to test the present research result intensively by
employing different types of analysts. It is expected that a comprehensive guideline
for object-oriented systems analysis will be developed.

NOTES

1. We are also aware that there are a number of disadvantages of protocol analysis. For
example, participants vary in the depth and amount of information they provide [46], and the
large volume of verbal data requires a great deal of time for analysis [37].

2. Note that these M.B.A. students were selected for the experiment to illustrate the process
of OOA methods, and demonstrate the behaviors involved in their application. It was not the
intention of the present study to make generalizations from this experiment.

3. The reader is referred to [53] for a detailed discussion about the identification of
inheritance structure in object-oriented systems analysis.

REFERENCES

1. Bailin, S.C. An object-oriented requirements specification method. Communications of
the ACM, 32, 5 (May 1989), 608-623.

2. Bansler, J.P., and Bodker, K. A reappraisal of structured analysis: design in an organiza-
tional context. ACM Transactions on Information Systems, 11,2 (April 1993), 165-193.

3. Barsalou, L. W. Ad hoc categories. Memory & Cognition, 11,3 (May 1983), 211-227.

4. Booch, G. Object-oriented development. /EEE Transactions on Software Engineering,
SE-12, 2 (February 1986), 211-221.

5. Bouwman, M.J.; Frishkoff, P.A.; and Frishkoff, P. How do financial analysts make
decisions? a process model of the investment screening decision. Accounting, Organizations
and Society, 12, 1 (January 1987), 1-29.

6. Coad, P, and Yourdon, E. Object-Oriented Analysis. Englewood Cliffs, NJ: Yourdon
Press, 1991.

7. Coleman, D., et al. Object-Oriented Development: The Fusion Method. Englewood
Cliffs, NJ: Prentice-Hall, 1994.

8. Crawford, D., ed. Special issue on object-oriented software testing. Communications of
the ACM, 37,9 (September 1994).

9. DeMarco, T. Structured Systems Analysis and Design. New York: Yourdon, 1978.

10. Embley, D.W.; Kurtz, B.D.; and Woodfield, S.N. Object-oriented Systems Analysis: A
Model-Driven Approach. Englewood Cliffs, NJ: Yourdon Press, 1992,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypany .

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 137

11. Ericsson, K.A., and Simon, H.A. Verbal reports as data. Psychological Review, 87, 3
(May 1980), 216-251.

12. Ericsson, K.A., and Simon, H.A. Protocol Analysis: Verbal Reports as Data. Cambridge,
MA: MIT Press, 1984.

13. Fichman, R.G., and Kemerer, C.F. Object-oriented and conventional analysis and design
methodologies. I[EEE Computer, 25, 10 (October 1992), 22-39.

{4. Gane, C.,and Sarson, T. Structured Systems Analysis: Tools and Techniques. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

15. Gentner, D. Structure-mapping: a theoretical framework for analogy. Cognitive Science,
7, 1 (January—March 1983), 155-170.

16. Guindon, R. Designing the design process: exploiting opportunistic thoughts. Human-
Computer Interaction, 5, 2-3 (Summer 1990), 305-344.

17. Henderson-Sellers, B., and Constantine, L.L. Object-oriented development and func-
tional decomposition. Journal of Object-Oriented Programming, 3, 1 (January 1991), 11-16.

18. Jalote, P. Functional refinement and nested objects for object-oriented design. /EEE
Transactions on Software Engineering, 15, 3 (March 1989), 264-270.

19. Klersey, G.F., and Mock, T.J. Verbal protocol research in auditing. Accounting, Orga-
nization and Society, 14, 1-2 (January 1989), 133-151.

20. Korson, T., and McGregor, J.D. Understanding object-oriented: a unifying paradigm.
Communications of the ACM, 33, 9 (September 1990), 40-64.

21. Krishnan, R.; Li, X.; and Steier, D. A knowledge-based mathematical model formulation
system. Communications of the ACM, 35,9 (September 1992), 138—146.

22. Maurer, J., ed. Special issue on object-oriented design. Communications of the ACM, 33,
9 (September 1990).

23. Maurer, J., ed. Special issue on next-generation database systems. Communications of
the ACM, 34, 10 (October 1991).

24. Mantei, M.M., and Teorey, T.J. Incorporating behavioral techniques into the systems
development life cycle. MIS Quarterly, 13, 3 (September 1989), 257-274.

25. Martin, J. Principles of Object-Oriented Analysis and Design. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

26. Mcintyre, S.C., and Higgins, L.F. Object-oriented systems analysis and design: method-
ology and application. Journal of Management Information Systems, 5, 1 (Summer 1988),
25-35.

27. McLeod, R., Jr. Management Information Systems, 5th ed. New York: Macmillan, 1993.

28. Meyer, B. Object-Oriented Software Construction. Englewood Cliffs, NJ: Prentice-Hall,
1988.

29. Minsky, M.L. A framework for representing knowledge. In J. Haugeland (ed.), Mind
Design. Cambridge, MA: MIT Press, 1981, pp. 95-128.

30. Morris, C.W. Foundations of the theory of signs. International Encyclopedia of Unified
Science, vol. 1, no. 2. Chicago: University of Chicago Press, 1955.

31. Newell, A., and Simon, H.A. Human Problem Solving. Englewood Cliffs, NJ: Prentice-
Hall, 1972.

32. Nisbett, R.E., and Wilson, T.D. Telling more than we know: verbal reports on mental
processes. Psychological Review, 84, 3 (May 1977), 231-259.

33. Payne, J.W.; Braunstein, M.L.; and Carroll, J.S. Exploring predecisional behavior: an
alternative approach to decision research. Organizational Behavior and Human Performance,
22,1 (August 1978), 1744,

34. Pei, D., and Cutone, C. Object-oriented analysis and design. Information Systems
Management, 12, 1 (Winter 1995), 54-60.

35. Rentsch, T. Object oriented programming. SIGPLAN Notices, 17, 9 (September 1982),
51-61.

36. Rosson, M.B., and Alpert, S.R. The cognitive consequences of object-oriented design.
Human-Computer Interaction, 5, 4 (Winter 1990), 345-379.

37. Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; and Lorensen, W. Object-Oriented
Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall, 1991.

38. Sanderson, P. M.; James, J.M.; and Seidler, K.S. SHAPA: an interactive software
environment for protocol analysis. Ergonomics, 32, 11 (November 1989), 1271-1302.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypanw .|

138 SHOUHONG WANG

39. Schank, R.C. Dynamic Memory. Cambridge: Cambridge University Press, 1982.

40. Senn, J.A. Information Systems in Management, 4th ed. Belmont, CA: Wadsworth, 1990.

41, Shlaer, S., and Mellor, S.J. Object-Oriented Analysis: Modeling the World in Data.
Englewood Cliffs, NJ: Yourdon Press, 1988.

42. Shneiderman, B. Software Psychology: Human Factors in Computer and Information
Systems. Cambridge, MA: Winthrop, 1980.

43. Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine. Read-
ing, MA: Addison-Wesley, 1984.

44. Sowa, I.F. Principles of Semantic Networks. San Mateo, CA: Morgan Kaufmann, 1991,

45. Sutcliffe, A.G. Object-oriented systems development: survey of structured methods.
Information and Software Technology, 33, 6 (1991), 433—442.

46. Sutcliffe, A.G., and Maiden, N.AM. Analysing the novice analyst: cognitive models in
software engineering. International Journal of Man-Machine Studies, 36, 5 (May 1992),
719-740.

47. Sweeney, M.; Maguire, M.; and Shackel, B. Evaluating user-computer interaction: a
framework. International Journal of Man-Machine Studies, 38, 4 (April 1993), 689-711.

48. Todd, P., and Benbasat, I. Process tracing methods in decision support systems research:
exploring the black box. MIS Quarterly, 11, 4 (December 1987), 493-512.

49. Vinze, A.S.; Sen, A.; and Liou, S.F.T. AEROBA: a blackboard approach to model
formulation. Journal of Management Information Systems, 9, 3 (Winter 1992-93), 123—143.

50. Vitalari, N.P., and Dickson, G.W. Problem solving for effective systems analysis: an
experimental exploration. Communications of the ACM, 26, 11 (November 1983), 948-956.

51. Wang, S. Object-oriented systems analysis: a tool for MIS. Data Resource Management,
3,4 (Fall 1992), 12-21.

52. Wang, S. The advantages of an object-oriented CASE environment. Software Engineer-
ing Strategies, 1, 3 (July—August 1993), 14-21.

53. Wang, S. Object-oriented modeling of business processes. Information Systems Manage-
ment, 11,2 (Spring 1994), 36-43.

54. Wang, S., and Archer, N.P. Identifying inheritance structure in object-oriented systems
analysis—a pattern matching approach. Journal of Object-Oriented Programming, 7, 2 (May
1994), 47-55.

55. Wirfs-Brock, R.J., and Johnson, R.E. Surveying current research in object-oriented
design. Communications of the ACM, 33, 9 (September 1990), 104—124.

APPENDIX A: Segmented Raw Protocol of an OOA

1. I’'m going to analyze the payroll processing system.

Obviously, employee is an object class.

. Let’s say employee number, employee name, and employee address are the
attributes.

4. The operations on these attributes are not uncovered yet,

5. but I would say that “return data” is a generic operation.

6. I’'m going to find another object class.

7

8

9

w N

. umm . . . Paycheck is an object.

. Pay date, employee name, gross pay, taxes, and net pay are its attributes.

. At this moment,

10. “print record,” “calculate gross pay,” “determine tax,” and “calculate net
pay” are the operations.

11. Paycheck should send a message to employee,

12. to get information about employee,

13. such as employee name, pay rate, and so on.

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyany

FORMALIZED OBJECT-ORIENTED MIS ANALYSIS 139

14. Oh, we may consider two types of employees,

15. Full time employee and part time employee.

16. The difference between them is that

17. different pay rates are applied to them.

18. Flat pay rate for full time employee,

19. and hour pay rate for part time employee.

20. These data will be sent back to paycheck

21. in response to the message.

22. so we have an inheritance relationship

23. between employee and full time employee and part time employee.

24. Ithink there is a need to keep the payment record in the payroll department.

25. So let’s say “payment history” is an object class.

26. Date, employ number, and paid amount should be kept in the record.

27. “Write record” is a generic operation of it.

28. Payment history can be created by paycheck.

29. But, what creates paycheck? . . .

30. Well, let’s say, “pay day” is an object class that creates and prints pay-
checks.

31. “Pay day” also writes “payment history.”

32. Now for pay day . . .

33. Ithink “system clock” will create a “pay day” object,

34. in accordance with the system definition.

35. Let’s check the system description . . .

36. “Time card” is an object class,

37. that has employee number and work hours.

38. A generic operation is “return data.”

39. “Paycheck” gets information about work hours from time card

40. to calculate the gross pay.

41. 1 think that “verify time card” is an operation included in “paycheck.”

42. We need “tax table” to determine tax.

43. “Tax table” is an object class,

44. and consists of various tax rates.

45. Whatelse . ..

46. Okay ... Let’s check it over.

47. 1 start with paycheck,

48. because it is important to this system.

49. Paycheck is created by pay day.

50. Pay day is in tum created by system clock.

51. Date comes from pay day.

52. Employee name and employee number come from employee.

53. Gross pay is calculated by an internal operation,

54. using data of pay rate which comes from employee,

55. and data of work hours which comes from time card.

56. Net pay is calculated

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypanw .|

140 SHOUHONG WANG

57. based on gross pay and tax table.
58. Here, we have also included “verify time card.”
59. “Pay day” also creates “pay history” to keep record.

60. Date comes from pay day.

61. Employee number comes from employee

62. through the messages between employee and paycheck,

63. and between pay day and paycheck.

64. Net pay comes from paycheck through pay day.

65. It seems to me that every data item is completed.

66. Let’s check inheritance structure.

67. Full-time employee and part-time employee inherit from employee.

68. I think that’s it.

APPENDIX B: Notations of the OOA Method and an Example of OOA

Result

According to this OOA method, the object class modulars, inheritance structures,
messages, and parameters of the messages are all specified in a single diagram. One
may find that the diagrams (figures 3 and 4) contain both the system analysis and
system logical design features of the traditional structured methods. Such analysis
diagrams could be used to convert into object-oriented programs directly [50, 51].

((Class name)

(Attributes)

(Operations)

Object class

(Message name)
S »

Message path

Figure 3.

(Super-class)

[T R

(Sub-class) (Sub-class)

Inheritance

(Data item name)
(-

Data flow response to a message

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyaanw.ir

141

nW
o
7}
2
£
©
o
2
£ PI02BHBIIM /" Kephegiebbu) Y ®reauimey,” BlequIniaY =
KedieN I&' SINOHXYIOM 5
sweNeafojdwy asjeq sinpayogawil SINOHMIOM Jequinnaeiolduiy 3
andino) >_9m_I>mnt fccgmv xoo_oEEm\nw\ @ o (indu)) psegaw] J/ .m
- . jaquinnaaAiojdwg M.
» sweNsako|dwT <) AW e mequImMeE .m
Sajeyxe
RedieN (> 2180 <O SiE AN sjeyxe | sjelg/|BIapa4 3
v Eouwcwetgj pPI0SBYBILIM —— abueyswoou| m.
Aedia (O o
AediaN d MO)mn_mmo..wf (induy) m_nm.rxa._.K 5
ale
9 pea ()| AoisiHAeq19661 | BlRUIN}aY £S]
/ASS:OV E:ooo<zmmo_‘|E:ooo<cmao._mmm_:. I
PIOdBYINUM)oayohediabbi | (N) .
A ajeyhedie|4 @
\ >an=02w§:o_mo/ e ajeyAedinoy
Xe | auIwIae Qg X pakojdwzawied| |eahoidwzawy|ing
p AegioN _ (1uan3) Aephed SR = PR
B4SSO0IH3)B|NOIBD
piepawl | Ajusp AOIV = %=d _ /_\ |
1028HIUl O»
P Hiuld Swenesoidus piodayiuld \ /
AedioN elequiniay
Aedssoin
eweNeskordiug ssalppyasfojdwg
sequinyeskojdwg << ®syABdinoy / eyeyhediel4 aweNaakodwg
o8 < ssalppyasskodwg JaqunNaakojdwy

(indinQ) xow:o?& <O suweNafoidwl g quiney / ("o1sAyd) ow>o_aEm\
<+-(O) Jaquinnaakojdwg

